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dispersion effects for cesium and a number of other 
heavy atoms at the LII ~ absorption edge (Phillips, 
Templeton, Templeton & Hodgson, 1978), the virtue of 
taking advantage of even small effects in anomalous 
dispersion (Hendrickson & Teeter, 1981) and ap- 
paratus for making simultaneous measurements of 
anomalous dispersion over a range of wavelengths 
(Arndt, Greenhough, Helliwell, Howard, Rule & 
Thompson, 1982), combined with the advancing 
theoretical results, will provide a broad range of 
opportunities to test and develop optimal procedures. 

I am very grateful to Mr Stephen Brenner for making 
the computations reported here. 

This research was supported in part by USPHS 
grant GM30902. 
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Abstract 

A discussion of the relationship between the symmetry 
of bicrystals and the resulting symmetry of convergent- 
beam electron diffraction (CBED) patterns is pre- 
sented. For this purpose bicrystal symmetry is defined 
from the symmetry of the dichromatic pattern or 
complex formed by the interpenetrating lattices or 
structures of the individual crystals in a bicrystal. The 
interrelation between the possible coloured point 
groups and the diffraction groups, characterizing the 
symmetry of a CBED pattern, is established. These 
results are illustrated by a determination of the 
symmetry of thin twinned Au crystals from suitable 
CBED patterns. These experiments give information 
about the state of relative translation of the two crystals 
at the grain boundary and are consistent with the state 
of zero translation expected for a (111) coherent twin 
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boundary in Au. It is pointed out that the interpretation 
of the CBED pattern symmetry may be complicated by 
a non-ideal location of the boundary plane in a 
bicrystal. 

1. Introduction 

It is now well established that the symmetry of single 
crystals may be determined in a reliable manner using 
the technique of convergent-beam electron diffraction 
(CBED). The relation between the symmetry of CBED 
patterns and crystal symmetry has been discussed by 
several authors (Goodman, 1975; Tinnappel, 1975; 
Buxton, Eades, Steeds & Rackham, 1976). In par- 
ticular, Buxton et al. (1976) have presented a sys- 
tematic classification of the symmetry of CBED 
patterns in terms of 31 diffraction groups, which is a 
very useful tool for crystal symmetry determination. 

This paper is concerned with the application of 

© 1983 International Union of Crystallography 
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CBED to bicrystals in the form of thin platelets with 
the boundary plane assumed to be coincident with the 
mid-plane of the specimen. As has been pointed out 
briefly elsewhere (Schapink & Mertens, 1981), it is 
possible with this specimen geometry to draw con- 
clusions about the state of translation of the crystals at 
the boundary plane from a determination of the 
symmetry of the bicrystal using CBED. In order to 
explore this method in a more detailed manner an 
extension of the method of Buxton et al. (1976) to 
bicrystal symmetry is presented here in which the 
bicrystal symmetry is described by using the 
dichromatic patterns. The concept not only simplifies 
consideration of the retention or destruction of bi- 
crystal symmetry elements due to relative displace- 
ments of the two crystals (Pond & Bollmann, 1979), it 
also simplifies the derivation of the diffraction sym- 
metry, for example when the projection is made (§ 2.3). 
The method will be illustrated by the results of the 
symmetry determination of a number of thin twinned 
Au crystals employing the CBED technique. 

2. CBED pattern symmetry from bicrystals 

2.1. The dichromatic description of bicrystal symmeto, 

As mentioned in the Introduction, the bicrystal 
symmetry is described by using the concept of 
differently coloured (e.g. black and white) interpene- 
trating lattices introduced by Pond & Bollmann (1979). 
In general, there is a basis associated with each lattice, 
a white basis made up of 'white atoms' with the white 
lattice and a black basis of'black atoms' with the black 
lattice so that strictly speaking, in the sense of Pond & 
Vlachavas (1983), the symmetry required is that of the 
dichromatic complex Ill (c). This is the symmetry 
generated by the relative orientation and position of the 
two crystal structures - if only their lattices were 
considered or if the crystals were holosymmetric as for 
the twinned Au crystals investigated in detail below (§ 
3), the symmetry would be that of the dichromatic 
pattern as originally described by Pond & Bollmann 
(1979). In either case, however, the important point is 
that the symmetry of the dichromatic complex or 
pattern depends on the relative positions of the crystals 
so that by, for example, using CBED to obtain the 
dichromatic symmetry, we obtain information about 
the relative displacement of the crystals. A table 
showing the possible symmetries associated with a 
first-order twin boundary in a holosymmetric f.c.c. 
crystal that will be used later in our investigation of the 
twinned Au crystals has been given by Schapink & 
Mertens (1981). In particular, it can be seen from this 
table that the dichromatic point symmetry may be 
modified by a translation of one crystal with respect to 
the other making this technique particularly convenient 
for convergent-beam diffraction work. 

However, in order to see the dichromatic symmetry 
in a convergent-beam pattern, an appropriate specimen 
that displays any symmetry relation between the 
crystal components is required. The ideal specimen is 
therefore constructed by cross-sectioning the di- 
chromatic complex (or pattern) (Pond & Vlachavas, 
1983) on a .plane perpendicular to the chosen zone 
axis* and removing all the 'black' atoms above this 
plane and all the 'white' atoms below, as in Fig. 1. In 
order to preserve any symmetry relation between the 
upper and lower parts of the bicrystal so created, the 
interface should also be the mid-plane of the sample as 
pointed out by Schapink & Mertens (1981). Although 
this may seem rather specialized it is just the analogue 
for electron diffraction of the rule in X-ray diffraction 
that the twin law is only apparent as a symmetry of the 
composite if the twins are equally developed (Buerger, 
1960, p. 58). 

According to Pond & Bollmann (1979) and Pond & 
Vlachavas (1983), the spatial symmetry of the 
dichromatic pattern or complex may have any dimen- 
sionality from zero to three depending on the number of 
non-collinear translation axes there are. Here, we shall 
only be concerned with the three-dimensional case, that 
is, for those relative orientations of the component 
crystals for which a 3D coincidence site lattice (CSL) 
exists.t The symmetry of the dichromatic complex is 
thus described by one of the Shubnikov space groups 
and its point group by one of the Shubnikov point 
groups. There are 90 of these coloured point groups 
(see, for example, Shubnikov & Belov, 1964; 

* Perpendicular to the zone axis if the symmetric Laue condition 
is satisfied: more strictly, in the asymmetric Laue case, it must be 
sectioned on a plane parallel to the foil as in Fig. 1. 

+ But note that relative translation of the lattices may modify the 
CSL, see Grimmer, Bollmann & Warrington (1974). 

/ / / / / / / / / / / / ,  

z 

Fig. 1. Schematic representation 

Y/ / / / / / / / / / / / ,  

K + G  

of the idealized diffraction 
experiment. The bicrystal is formed by removing all the 'black' 
atoms above and the ~white" atoms below the mid-plane of the 
sample. Electrons incident in direction K are diffracted into 
direction K + G. 
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Opechowski & Guccione, 1965), of which 32 are grey 
groups that are useful for describing the symmetry of 
stacking-fault or inversion boundaries (Pond & 
Vlachavas, 1983). The grey groups will not be 
considered here, nor will the ordinary monochromatic 
point groups which can be used to describe the 
symmetry of bicrystals with an interphase boundary 
where the two components are different. The remaining 
58 coloured groups describe the symmetry of bicrystals 
with a special orientation relationship between the 
components such as occurs in twins, for example. We 
shall further restrict ourselves to twins where ~', the 
ratio of the volume of the unit cell of the CSL to that of 
the crystal lattice, is greater than one so that twinning 
by merohedry is excluded [~' may be regarded as the 
twin index in the definition of Friedel (1926)]. It is 
readily found that the number of coloured point groups 
for this type of bicrystal is reduced from 58 to 34 since 
such a point group can neither belong to any of the six 
point groups associated with the cubic system nor 
contain a coloured inversion centre, thus eliminating 18 
of the remaining point groups. 

2.2. Diffraction from bicrystals 

In order to establish the connection between the 34 
remaining coloured point groups and the 31 diffraction 
groups we proceed as in Buxton et al. (1976), hereafter 
referred to as I. We imagine that the incident beam 
impinges on a thin bicrystal specimen constructed as in 
{} 2.1 with fiat parallel surfaces so that electrons 
incident in direction K are diffracted into K + G (Fig. 
1) where K and G stand for the components of the 
electron wavevector k and reciprocal-lattice vector g, 
respectively, that are perpendicular to z as in I. Then, if 
a transformation S represented by the Seitz symbol 
{R Iv} (Seitz, 1936) is a symmetry of the system, i.e. of 
the bicrystal including the interface, it follows from the 
invariance of the Hamiltonian of the fast electrons that 

S (~uk) = ~Rk (1) 

to within a phase factor which depends on v, the 
translational part of S. Equation (1) shows that the 
wavefunction Tk for electrons incident in direction k is 
related to that for the electrons incident in direction R k, 
where R is the rotational part of the transformation S. 
The symmetry relations between the diffracted beams 
that define the diffraction groups are obtained from (1) 
as in I, either directly if R leaves the electron beam 
incident on the specimen from above as in Fig. 1, or 
indirectly using the reciprocity relation (Pogany & 
Turner, 1968; Buxton et al., 1976) if electrons in 
direction Rk are incident on the specimen from below. 
As usual, relations of the second kind are indicated by 
a subscript R (for Reciprocity) in the diffraction group. 

In general, the elements S of the symmetry group of 
the bicrystal may be obtained from the dichromatic 

complex III (c) by cross-sectioning as described in {} 2.1 
or by Pond & Vlachavas (1983). Here, however, we are 
only interested in point symmetries so we need only 
consider the dichromatic point group. The symmetry 
operations required are those that leave the bicrystal 
sketched in Fig. 1 invariant, i.e. vertical ordinary 
operations that leave the z axis unchanged and 
horizontal coloured operations that transform z into 
- z .  The latter therefore only appear in the diffraction 
group by virtue of the reciprocity relation, i.e. as an 'R'  
operation. 

As an example, consider the ~r = 3 CSL for the 
first-order twin boundary in Au. According to 
Schapink & Mertens (1981), if there is no translation of 
the white crystal with respect to the black, the point 
group is 6'/m'm'm with the hexad axis parallel to 
[111]. As usual, we use a prime to denote an 
antisymmetric or 'coloured' operation that turns a 
'white' atom into a 'black' one. If we prepare a sample 
for taking a [111] convergent-beam pattern, the 
dichromatic group has to be sectioned on (111), leaving 
only an ordinary triad axis, the three ordinary vertical 
mirrors, the coloured horizontal mirror and three 
coloured horizontal diad axes making up the symmetry 
group (;'m2' [the point group of the bicrystal Ul (b) in 
the terminology of Pond & Vlachavas (1983)]. At this 
stage, the prime for the antisymmetry serves only to 
remind us that the operation connects the two crystal 
components but otherwise has no further physical 
significance and can be ignored. The point symmetry of 
the bicrystal is therefore 6m2 and its diffraction group 
3m 1 n as in I. 

The complete list of the diffraction groups that may 
occur for different cross sections of each of the 34 
coloured point groups of interest here is given in Table 
1. This is analogous to Table 3 of I, but note that it 
contains point groups differing only by the distribution 
of primes over the symmetry elements as these are quite 
distinct and often lead to very different diffraction 
groups. An example is shown in Fig. 2 where we give 
the diffraction group as seen down ]001] for the family 
of coloured point groups belonging to 42m. It should 
also be noted that, as mentioned above, 'R'  operations 
only occur in the diffraction group due to coloured 
symmetry operations in the dichromatic point group 
that relate one crystal component to the other. Thus, if 
we were to encounter a bicrystal with a state of 
translation at the boundary such that the resulting point 
group contains only ordinary symmetry elements, the 
diffraction group would be one of the ten which do not 
contain the symbol R. A similar result would be 
obtained for a bicrystal with an interphase boundary. 

2.3. The effect of  the projection approximation on 
bicrystal diffraction symmetry 

For low-index zone axes it frequently happens for 
reflexions near the origin that either the projection 
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approximation holds, i.e. that scattering is only due to 
zero-layer reflexions perpendicular to the zone axis, or 
that scattering due to the full three-dimensional 
dependence of the crystal potential is clearly discernible 

Table 1. The relation between the diffraction groups and 
the dichromatic point groups for bicrystals with ~r > 1 

The x indicate the possible diffraction groups for each point group 
and the O the projection diffraction groups for each point group. 

2' 2 2' 

2'm' ~'2 m' l,'2'm 

(a) 

qo 

2 m R m R 

© 
®+Q 

@ 

\ qQ/ 

\ 
L R /-.R m m R 

(b) 

Fig. 2. (a) Stereographic projection of the point groups ~,2'm', 
4'2m' and 4'2'm and (b) t,he associated diagrammatic represen- 
tation of their diffraction groups. 

as fine higher-order-Laue-zone (HOLZ) lines (Jones, 
Rackham & Steeds, 1977; Buxton, 1976). In the" 
former case, the symmetry observed is that of the 
projection diffraction group whilst, in the latter case, 
the symmetry of both the projection diffraction group 
and the diffraction group can be seen simultaneously 
(Buxton et al., 1976). According to I, for a single- 
crystal specimen, the projection diffraction group is 
simply obtained from the diffraction group by adding 
the 1R operation if it is not already present. This is due 
to the horizontal mirror symmetry that the projected 
crystal potential always possesses. 

For a bicrystal, however, this simple rule no longer 
works as can be seen by considering the first-order 
(111) twin boundary in Au again. We saw previously 
that the diffraction group was 3ml R which already 
contains the 1R operation due to the twin law. The 
projection diffraction group, however, is 6mm 1R as can 
be seen by noting that the point symmetry of both the 
upper and lower crystals when projected along the z, 
[ 111 ], axis is 6mm. Fortunately, the correct projection 
diffraction group may easily be obtained from the 
dichromatic point group (6' /m'm'm for our Au twin) if 
we recall that this describes the symmetry of the 
hypothetical interpenetrating crystals before sectioning 
to obtain the bicrystal. When we also project however, 
cross-sectioning has no effect so we may disregard the 
distinction between the primed antisymmetry and 
unprimed ordinary elements in the dichromatic point 
group and obtain the projection diffraction group 
directly from it. For the Au twin, 6' /m'm'm thus 
becomes 6/mmm, which, according to Tables 2 and 4 
of I, immediately gives the projection diffraction group 
correctly as 6mm 1R. 

Note that symmetry of 6mml R is considerably 
higher than that of 3ml R, the diffraction group of the 
bicrystal, even though the latter already contains the 1R 
operation due to the horizontal mirror in the point 
group of the bicrystal. If the specimen had been a single 
crystal, the extra symmetry introduced by the pro- 
jection approximation would have been accidental in 
the sense of I (§§ 2.4 and 4) but, for the bicrystal, it is 
a natural consequence of the symmetry of the com- 
posite which is best represented by the dichromatic 
groups. 

This means, however, that for a bicrystal it is not 
possible to give a table showing the effect of the 
projection approximation on each diffraction group. 
For example, given the diffraction group 2mRm R we 
cannot say what will happen in the projection approxi- 
mation unless we know whether the dichromatic 
symmetry is 2'2'2, m'm'm, 4'22', 42'm', 6'2'2 or 
6'/m'm'm, but, knowing what the dichromatic sym- 
metry is, we can use the tables given in I to see the 
effect of making the projection approximation. In cases 
where both diffraction groups are observable as 
described at the beginning of this section, however, this 
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means that additional information about the 
dichromatic group is available. For example, dif- 
fraction group 3rnl R can only occur in combination 
with 6mrnl R in the projection approximation if the 
dichromatic group is 6'/m'm'm seen down its [00.1] 
axis. Table 1 therefore also lists the possible diffraction 
groups that carl occur in the projection approximation 
for each of the 34 dichromatic groups considered here. 

2.4. State of translation at the boundary 

It has been found in recent years that a grain 
boundary in a bicrystal is frequently characterized by a 
rigid translation away from the coincidence position of 
the constituent crystals. There is both limited experi- 
mental evidence for this type of relaxation at the 
boundary (mainly restricted to boundaries belonging to 
the Z' = 3 system in f.c.c, metals and materials having 
the diamond structure) as well as evidence from 
computer simulation of the equilibrium position of 
atoms in a boundary (Vitek, Sutton, Smith & Pond, 
1980). 

For diffraction purposes, the symmetry of bicrystals 
may be conveniently classified using the dichromatic 
groups as we have just seen, but the important point is 
that relaxation at the boundary leading to a rigid 
translation generally produces a change in the 
dichromatic pattern symmetry (Pond & Bollmann, 
1979; Schapink & Mertens, 1981). Consequently, by 
determining the dichromatic pattern symmetry we can 
often draw conclusions about the state of translation at 
a particular boundary in a bicrystal. This aspect is 
emphasized in this paper for the particular bicrystai 
geometry in which the boundary is the mid-plane of the 
specimen. Although as pointed out in § 1 this is 
analogous to the situation in X-ray diffraction, such an 
idealized geometry may be difficult to obtain experi- 
mentally, especially if determining the dichromatic 
point group using Table 1 requires convergent-beam 
patterns from several zone axes. However, we expect 
that small deviations from the ideal geometry will not 
greatly influence the results, as is usually found in single- 
crystal CBED work. 

Finally, it should also be pointed out that knowledge 
of the dichromatic point group is not always sufficient 
to determine the state of translation in a bicrystal. For 
bicrystals based on holosymmetric f.c.c, or b.c.c. 
crystals the possible dichromatic pattern symmetries 
for different types of CSL boundaries and different 
states of translation of a particular boundary have been 
tabulated (Pond & Bollmann, 1979; Schapink & 
Mertens, 1981). From this work it is clear that in some 
cases the full space-group symmetry is needed in order 
to determine the type of translation existing at a 
boundary. The latter symmetry should be obtained in 
the usual way by considering extinctions due to screw 
axes or glide planes (Gjonnes & Moodie, 1965; 
Goodman, 1978; Steeds & Vincent, 1983). 

3. Experimental results 

As an illustration of the method presented in the 
previous section we now discuss the symmetry deter- 
mination of a number of twinned Au crystals. Thin 
electron-transparent Au single crystals with a [111] 
surface normal were obtained using a method des- 
cribed previously (Erlings & Schapink, 1978). 
Occasionally, these crystals were found to contain a 
coherent twin boundary parallel to the surface. The 
presence of a twin boundary was established using 
standard selected-area diffraction patterns taken at a 
suitable axis, e.g. a (123) axis. It should be noted, 
however, that in this way no decision can be made as to 
whether the number of twin boundaries parallel to the 
surface equals 1 or is larger than 1. This uncertainty 
may have some infuence on the details of the CBED 
patterns to be discussed below. 

All CBED patterns in this investigation were 
obtained with a Philips EM-400T electron microscope 
operating at 100 kV in the STEM mode. Care was 
taken to avoid areas in the crystals in which local 
defects could have altered the resulting pattern sym- 
metry. In order to reduce diffuse scattering the 
specimens were cooled to liquid-nitrogen temperature. 

As has been pointed out elsewhere (Schapink & 
Mertens, 1981), a twinned f.c.c, crystal containing a 
coherent twin boundary is expected to belong to the 
point group 6'/m'm'm. This is because the rigid 
translation of the crystals at the boundary is expected 
to be zero for a (111) coherent twin boundary. 
According to Table 1 and as discussed in § 2.2, this 
point group leads to diffraction group 3ml R. Fig. 3 
shows a [111] zone-axis pattern for a twinned Au 
crystal, together with details from the (000) bright-field 
disc. The latter has 6mm symmetry as also may the 
low-order zero layer 220 reflexions, but the symmetry 
of the whole pattern is clearly only 3m because the 
bright ring of first-order Laue-zone reflexions does not 
possess mirror symmetry parallel to the 224 Kikuchi 
bands. Reference to Table 2 of I shows that the 
diffraction group is therefore 3ml R and hence from 
Table 1 that the dichromatic point group is either 
6'/m'm'm or (~'m2'. For comparison, the 3m sym- 
metry of the corresponding whole pattern and (000) 
disc from a Au single crystal seen down [111] which 
has diffraction group 6Rmm k is displayed in Fig. 4(a). 

The dichromatic group 6'm2' would imply an 
arbitrary translation in the z direction along the 
common [111] axis of the crystals (Schapink & 
Mertens, 1981), which is unlikely for a coherent twin 
boundary in Au, but we can dismiss this alternative 
dichromatic point group _by CBED by looking at the 
internal symmetry of a 220 dark-field reflexion in the 
Bragg condition (Fig. 5). This appears to have 2mm 
symmetry, which does not accord with what we should 
expect for diffraction group 3ml R as the only special 
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reflexions displaying 2mm symmetry in this diffraction 
group are those lyin_g on the lines of mirror symmetry 
in the group, i.e. 224 reflexions etc. The 220 reflexion 
should only display the same internal symmetry as any 

general reflexion, i.e. 2 according to Table 2 of I. 
However, these low-order zero-layer reflexions do not 
show any evidence of three-dimensional diffraction 
effects unlike those taken from single-crystal gold 
specimens (Fig. 4b), so we may apply the projection 
approximation to them. As described in § 2.3 and 
shown in Table 1, the relevant diffraction group from 
6 ' / m ' m ' m  is then 6 m m l  n for which both the 220 and 

(a) 

~20 band 

~ 022 band 

~ I  ~ ~ ~ I ~ ~ V I ~ m '  2 2 L  band 

~ 20~ band 

• common > 
/x matrix reftectlon 
• twin 

(b) 

Fig. 3. (a) [ i 11 ] zone-axis pattern of a twinned Au bicrysta]; the 
inset shows details of the (000) bright-field disc. (b) Schematic 
drawing of part of the zero and first layer of the reciprocal lattice 
of a twinned f.c.c, crystal close to the [ l l l l  orientation. For 
clarity the location of reflexions in the second layer has not been 
included; these can, however, easily be obtained by inter- 
changing the positions of the black and white triangles of the first 
layer. 

(a) 

(b) 

Fig. 4. (a) [ I l l J zone axis of a Au single crystal; the inset shows 
details of the (000) disc. (b) (220) disc from a Au single crystal in 
Bragg position. The fine high order Laue-zone lines have no 
symmetry. 
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224 reflexions should have 2ram internal dark-field 
symmetry. For 6'rn2', on the other hand, the projection 
diffraction group is still 3m 1 R, which cannot account 
for the internal dark-field symmetry.  The dichromatic 
point group is therefore 6'/m'm'm. 

With this group, it is also easy to explain the 6ram 
symmetry of the six low-order layer 220 reflexions in 
Fig. 3 that we noted earlier by invoking the projection 
approximation when the vertical coloured mirror 
parallel to (220) acts as an ordinary mirror. In fact, it 
continues to act as an ordinary mirror for the low-order 
zero-layer reflexions even when we tilt further along the 
224 Kikuchi band as in Fig. 6. However, it is apparent 
from the lack of symmetry between the higher-order 
pairs of matrix/twin reflexions such as the 551 
reflexions arrowed in Fig. 6 (the disposition of matrix 
and twin reflexions is shown in Fig. 3b) and from the 
Kikuchi pattern itself, especially when we tilt further 
along the 224 band, Fig. 7, that it cannot be a true 
mirror symmetry of the diffraction group. It may also 
be noted in passing that the Kikuchi pattern always 
shows the symmetry we should expect for the dif- 
fraction group, indicating that the reciprocity relation 
holds for electrons that have been diffusely or inelastic- 
ally scattered as well as for those that have only 
undergone coherent elastic scattering (Pogany & 
Turner, 1968). 

In a number of twinned Au crystals encountered in 
this investigation several details of the patterns ob- 
served deviated from those shown in Figs. 3, 6 and 7. 
Such deviations are primarily attributed to the location 
of the boundary plane in the crystal, i.e. the boundary 
deviates from the mid-plane position by a sufficiently 
large fraction of the relevant extinction distances to 
affect the amplitudes of the diffracted waves appreci- 
ably. It is also possible that the number of twin 
boundaries parallel to the surface in some crystals was 
greater than one. It might be best to study the effect of 
the position of the boundary on the symmetry of a 

Fig. 6. An otT-axis CB pattern-lr.om a twinned Au crystal tilted 
along the 224 Kikuchi band. Note the 1~.¢:k of-mirror symmetry 
between the 551 matrix and twin reflexions arrowed. 

Fig. 5. The internal 2ram symmetry of a (220) disc in Bragg 
position lrom the Au bicrystal of Fig. 3. 

Fig. 7. Off axis CB pattern a~ in Fig. 6. but tilted further along.the 
224 Kikuehi band. Note that the Kikuchi pattern clOet; not have 
mirror symmetry about the line parallel to (2i0). 
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CBED pattern by using a specimen with it inclined to 
the surface and obtaining a series of patterns for 
different depths of the boundary. Such an investigation 
will be undertaken in due course. Meanwhile, a useful, 
although rough, estimate of the relative thickness of the 
matrix and twinned parts of a bicrystal may be 
obtained from the spacing of the fringe patterns in 
symmetrically excited matrix and twin reflexions that 
are not significantly affected by dynamical diffraction, 
as shown in Fig. 8. From this pattern, the thicknesses 
of matrix and twinned parts of the specimen are 
estimated to be roughly equal. 

4. Discussion 

The primary aim of this investigation was to explore the 
possibilities of a symmetry determination of a par- 
ticular class of bicrystals using CBED. The relation- 
ship between the diffraction groups and the dichromatic 
groups used to describe the symmetry of the crystalline 
composite was therefore established and a simple case, 
a (111) coherent twin boundary in a f.c.c. Au crystal 
examined in detail. The dichromatic point group was 
found to be 6'/m'm'm from which, by using Table 1 of 
Schapink & Mertens (1981), it can be concluded that 
the state of translation at a (111) coherent boundary in 
Au is either zero or equal to half the lattice spacing of 

Fig. 8. Fringe pattern in symmetrically excited matrix (M) and twin 
(T) reflexions in an off-axis CB pattern tilted along the 224 
Kikuchi band. 

adjacent (111) planes in the bicrystal. In the latter case, 
the [111] axis is a screw axis, 6~, in the bicrystal but 
there would be no extinctions due to this axis or its 
associated c'-glide plane in our [11 I I zone-axis pat- 
terns. Our results are therefore consistent with the 
expected state of zero translation but cannot entirely 
exclude the possibility of a translation of half a lattice 
spacing parallel to [111]. Our results are also con- 
sistent with the assumption that the boundary is ideally 
located at or near the mid-plane of the bicrystal. The 
detailed effect of a non-ideal location of the boundary 
on the pattern has yet to be evaluated and con- 
sequently care should be taken in the interpretation of 
CBED pattern symmetry from bicrystals. Neverthe- 
less, we believe this method to be quite useful for 
analysing the structure of grain boundaries parallel (or 
nearly parallel) to the surface of a crystal. A brief 
comparison of this method with Pond's method of 
determining translations (Pond & Vitek, 1977) has 
been presented previously (Schapink & Mertens, 1981). 

As has been pointed out in § 2.1, this paper is 
restricted to grain boundaries occurring in the kind of 
coincidence-related bicrystals frequently encountered in 
physical metallurgy, i.e. boundaries characterized by a 
CSL for which Z' > 1. This excludes cases of twinning 
by merohedry (Friedel, 1926) in which the CSL has the 
same unit cell as the constituent crystals. This type of 
twinning may occur in crystal structures having a point 
group which is a subgroup of the (holohedral) point 
group of the lattice. Incorporation of such twinning 
phenomena requires an extension of Table 1 that gives 
the relationship between the diffraction groups and the 
dichromatic groups since in these cases the dichromatic 
groups may contain a coloured inversion centre or 
belong to the cubic system. All 58 coloured point 
groups should then have been included in Table 1. 

The authors would like to thank Dr R. C. Pond for 
providing a preprint of his paper with Vlachavas on 
bicrystallography and for showing one of us (BFB) the 
use and significance of the dichromatic description of 
bicrystal symmetry. 
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Abstract 

A procedure is presented for three-dimensional refine- 
ment of heavy-atom parameters without the use of 
phase information in the methods of single and multiple 
isomorphous replacement. This procedure is based on 
the Patterson-function correlation method of Ross- 
mann [Acta Cryst. (1960), 13, 221-226] except that 
the origins of the Patterson functions are now removed 
from this correlation and centric and acentric reflec- 
tions are treated separately. The resulting procedure is 
shown theoretically and by application to three test 
cases to yield accurate and essentially unbiased 
estimates of the occupancies, thermal parameters, and 
positions of heavy-atom sites. 

lntroduetlon 

Often a difficult step in the determination of the 
structure of a crystalline protein by the methods of 
single or multiple isomorphous replacement (SIR or 
MIR) is the refinement of positions, occupancies, and 
thermal factors of the heavy atoms bound in the 
isomorphous derivatives. 

Two general methods have been commonly used to 
carry out this refinement. The method of Dickerson, 
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Kendrew & Strandberg (1961) requires several iso- 
morphous derivatives, all of which (Dickerson, Wein- 
zierl & Palmer, 1968) or some of which (Blow & 
Matthews, 1973) are used to determine approximate 
phases for the protein structure. These phases are in 
turn used to refine the heavy-atom parameters for one 
or 'more derivatives. In the SIR method, and often 
during early stages of the MIR method, however, it is 
necessary to refine the heavy-atom parameters for a 
single derivative. Since this refinement method requires 
several derivatives, it cannot be effectively used in these 
cases. Also, as Blow & Matthews (1973) have pointed 
out, this method does not yield unbiased estimates of 
the occupancies of heavy-atom sites. 

The least-squares method of Rossmann (1960) and 
related methods due to Hart (1961) and Kartha (1965) 
require only a single isomorphous derivative and do not 
involve the calculation of phases. These procedures are 
based on the concept that the difference between 
derivative and native structure-factor amplitudes is 
related to the true heavy-atom structure-factor ampli- 
tude. In the method of Rossmann (1960), heavy-atom 
parameters are refined so as to minimize the sum over 
all reflections hkl of the residual R: 

R : ~. ,hkl[(K'hkl _ K'hkl "~2 [ rhkla212 (1) t~ tV t ph,obs ~ p,obs/ --  Kdcalc/ J , 
hkl 

where 1;;'hkl and l~hkl -ph,obs • p,obs are observed derivative and 
native structure-factor amplitudes for a reflection with 
indices hkl, Cnkl is a heavy-atom structure-factor J calc 
amplitude calculated from the estimated heavy-atom 
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